Clustering Analysis




  Introduction


Clustering analysis is a technique in unsupervised learning that groups data points into clusters (subsets) based on similarity, aiming for intra-cluster homogeneity and inter-cluster heterogeneity.
Clustering analysis modules currently contain seven algorithms to choose from: PCA, PCoA, t-SNE, UMAP, K-Means, Hierarchical K-Means and Fuzzy Clustering (Mfuzz).


  Method Selection



         PCA


         PCoA


         t-SNE   ( Perplexity:    )


         UMAP


         K-Means


         Hierarchical K-Means


         Fuzzy Clustering   ( Cluster Number:    )


  Figures of Cases